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An efficient synthesis of lactone moiety of compactin has been achieved. The stereogenic centers were
generated by means of iterative proline-catalyzed sequential a-aminoxylation and Horner–Wads-
worth–Emmons (HWE) olefination of aldehydes.
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Compactin (1a) and mevinolin (1b) (Fig. 1) are potent compet-
itive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase, the enzyme involved in the rate-limiting step of
cholesterol biosynthesis in humans.1 Their ability to lower blood
cholesterol levels, especially plasma low-density lipoprotein
(LDL)2 cholesterol in human beings, is important for the mitigation
of arteriosclerosis. The unique structural features of this class of
compounds called ‘mevinic acids’, and their potential applications
as hypocholesterolemic agents have aroused a great interest
among synthetic organic chemists, resulting in an onslaught of
activity directed at the synthesis of these challenging target
molecules.

Synthetic studies in mevinic acids can be grouped into three
primary sections: (1) total synthesis, (2) synthesis of the decalin
units, and (3) synthesis of b-hydroxy-d-lactone moiety. The key
structural feature of these molecule is chiral b-hydroxy-d-lactone
moiety which in its open acid form closely mimics mevalonic acid,
a crucial intermediate in the biosynthesis of cholesterol,3 hence
several research groups worldwide have focused much attention
on the stereocontrolled synthesis of the d-lactone moiety (2).4

In recent years, the area of organocatalysis has emerged as a
promising strategy and as an alternative to expensive protein
catalysis and toxic metal catalysis,5 thus becoming a fundamental
tool in the catalysis toolbox available for asymmetric synthesis.6

Recently, we developed an iterative approach to the enantiopure
ll rights reserved.

: +91 20 25902629.
synthesis of syn/anti-1,3-polyols, which are based on proline-cata-
lyzed sequential a-aminoxylation and Horner–Wadsworth–Em-
mons (HWE) olefination of aldehydes.7

As a part of our research programme aimed at developing
enantioselective synthesis of biologically active natural products,8

we became interested in devising a simple and concise route to
lactone moiety (2) of compactin/mevinolin via our recently devel-
oped methodology7 for enantiopure syn/anti-1,3-polyols using
organocatalysis. Herein we report our successful endeavors
toward the total synthesis of 2 employing proline-catalyzed
sequential a-aminoxylation and Horner–Wadsworth–Emmons
(HWE) olefination of aldehyde as the key step. As shown in
Scheme 1, the synthesis of target compound 2 began with the
aldehyde 3, which was subjected to sequential a-aminoxylation
using L-proline as a catalyst followed by HWE-olefination reaction
(+)-Compactin ( R = H)
(+)-Mevinolin (1b R = Me)

Figure 1. Structures of (+)-compactin (1a), (+)-mevinolin (1b) and b-hydroxy-d-

lactone moiety (2).
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Scheme 1. Reagents and conditions: (a) (i) nitrosobenzene, L-proline, DMSO;
(EtO)2P(O)CH2COOEt, DBU, LiCl, CH3CN; (ii) H2/Pd–C, EtOAc, 8 h, 65%; (b) TBSCl,
imidazole, DMF, overnight, 91%; (c) (i) DIBAL-H, DCM, �78 �C; (ii) L-proline,
nitrosobenzene, DMSO; (iii) NaBH4, MeOH, 0.5 h, 70% (over three steps); (d) H2/Pd–
C, EtOAc, 8 h, 92%; (e) (i) TsCl, Bu2SnO, Et3N, 2 h; (ii) K2CO3, MeOH, rt, 1 h, 82% (over
two steps); (f) vinylmagnesium bromide, 1 h, 81%; (g) TBSCl, imidazole, DMF,
overnight, 88%; (h) RuCl3�3H2O, NaIO4, CCl4–H2O–CH3CN = 4:1:1, 5 h, 44%, (i) cat.
HCl, MeOH, overnight, 79%.
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to furnish O-amino-substituted allylic alcohol which was directly
subjected to hydrogenation conditions using catalytic amounts of
Pd/C to furnish the c-hydroxy ester 49 in good yield and in >97%
ee.10

The free hydroxy group of c-hydroxy ester 4 was protected as
TBS ether to furnish compound 5 in 91% yield. The Dibal-H reduc-
tion of ester 5 at �78 �C furnished aldehyde which was subjected
to a-aminoxylation catalyzed by L-proline, followed by in situ
reduction using NaBH4 to furnish the O-amino-substituted diol
6 in overall 70% yield and 92% de (determined from the 1H and
13C NMR spectral analysis). Compound 6 was subjected to reduc-
tive hydrogenation conditions to afford the diol 711 in 92% yield,
which on selective monotosylation and base treatment furnished
epoxide 8 in 82% yield. Epoxide 8 was opened with vinylmagne-
sium bromide to get the homoallylic alcohol 9 in 81% yield, which
on protection of free hydroxy as TBS ether afforded compound 10
in 88% yield. Olefinic oxidation of 10 using RuCl3�3H2O and NaIO4

furnished the acid 11, which was cyclized under acidic conditions
(catalytic amount of HCl in MeOH) to give the lactone 2 in good
yield. Mp: 106�107 �C; lit.4e mp: 108 �C, ½a�25

D +68.69 (c 2.0,
CHCl3); lit.4h ½a�25

D +68.88 (c 2.29, CHCl3). The physical and spec-
troscopic data of 2 were in full agreement with the literature
data.4h,e

In conclusion a short and efficient asymmetric synthesis of lac-
tone moiety of compactin has been achieved by using a practical
and efficient organocatalytic strategy amenable to both syn and
anti-1,3-diol with high degree of enantio- and diastereoselectivi-
ties. The desired stereocenters can simply be achieved by changing
the catalyst. Further application of this methodology to the synthe-
ses of biologically active compounds containing 1,3-polyols is cur-
rently underway in our laboratory.
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